"fundamental group" meaning in English

See fundamental group in All languages combined, or Wiktionary

Noun

Forms: fundamental groups [plural]
Head templates: {{en-noun}} fundamental group (plural fundamental groups)
  1. (topology) For a specified topological space, the group whose elements are homotopy classes of loops (images of some arbitrary closed interval whose endpoints are both mapped to a designated point) and whose group operation is concatenation. Wikipedia link: fundamental group Categories (topical): Topology Derived forms: algebraic fundamental group, étale fundamental group, orbifold fundamental group Related terms: fundamental groupoid Translations (group of equivalence classes of the homotopies of loops in a given topological space): grup fonamental [masculine] (Catalan), fundamentální grupa [feminine] (Czech), fundamentaalgroep [feminine] (Dutch), perusryhmä (Finnish), groupe fondamental [masculine] (French), Fundamentalgruppe [feminine] (German), fundamentális csoport (Hungarian), undirstöðugrúpa [feminine] (Icelandic), gruppo fondamentale [masculine] (Italian), grupa podstawowa [feminine] (Polish), фундаментальная группа (fundamentalʹnaja gruppa) [feminine] (Russian), fundamentalgrupp [common-gender] (Swedish), temel grup (Turkish), фундаментальна група (fundamentalʹna hrupa) [feminine] (Ukrainian)

Inflected forms

{
  "forms": [
    {
      "form": "fundamental groups",
      "tags": [
        "plural"
      ]
    }
  ],
  "head_templates": [
    {
      "args": {},
      "expansion": "fundamental group (plural fundamental groups)",
      "name": "en-noun"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "noun",
  "senses": [
    {
      "categories": [
        {
          "kind": "other",
          "name": "English entries with incorrect language header",
          "parents": [
            "Entries with incorrect language header",
            "Entry maintenance"
          ],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Entries with translation boxes",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with 1 entry",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with entries",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Catalan translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Czech translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Dutch translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Finnish translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with French translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with German translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Hungarian translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Icelandic translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Italian translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Polish translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Russian translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Swedish translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Turkish translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Ukrainian translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "topical",
          "langcode": "en",
          "name": "Topology",
          "orig": "en:Topology",
          "parents": [
            "Mathematics",
            "Formal sciences",
            "Sciences",
            "All topics",
            "Fundamental"
          ],
          "source": "w"
        }
      ],
      "derived": [
        {
          "word": "algebraic fundamental group"
        },
        {
          "word": "étale fundamental group"
        },
        {
          "word": "orbifold fundamental group"
        }
      ],
      "examples": [
        {
          "ref": "1991, William S. Massey, A Basic Course in Algebraic Topology, Springer, page 35:",
          "text": "From the definition it will be clear the group is a topological invariant of X; i.e., if two spaces are homeomorphic, their fundamental groups are isomorphic.",
          "type": "quote"
        },
        {
          "ref": "2011, John Coates, Minhyong Kim, Florian Pop, Mohamed Saïdi, Peter Schneider, editors, Non-abelian Fundamental Groups and Iwasawa Theory, Cambridge University Press, page vii:",
          "text": "Therein came into focus the far-reaching vision that the perspective of non-abelian fundamental groups could lead to a fundamentally new understanding of deep arithmetic phenomena, including the arithmetic theory of moduli and Diophantine finiteness on hyperbolic curves.",
          "type": "quote"
        },
        {
          "ref": "2012, Jakob Stix, editor, The Arithmetic of Fundamental Groups: PIA 2010, Springer, page ix:",
          "text": "During the more than 100 years of its existence, the notion of the fundamental group has undergone a considerable evolution.",
          "type": "quote"
        }
      ],
      "glosses": [
        "For a specified topological space, the group whose elements are homotopy classes of loops (images of some arbitrary closed interval whose endpoints are both mapped to a designated point) and whose group operation is concatenation."
      ],
      "id": "en-fundamental_group-en-noun-V6LksscT",
      "links": [
        [
          "topology",
          "topology"
        ],
        [
          "topological space",
          "topological space"
        ],
        [
          "group",
          "group"
        ],
        [
          "element",
          "element"
        ],
        [
          "homotopy",
          "homotopy"
        ],
        [
          "class",
          "class"
        ],
        [
          "image",
          "image"
        ],
        [
          "closed",
          "closed"
        ],
        [
          "interval",
          "interval"
        ],
        [
          "endpoint",
          "endpoint"
        ],
        [
          "map",
          "map"
        ],
        [
          "point",
          "point"
        ],
        [
          "operation",
          "operation"
        ],
        [
          "concatenation",
          "concatenation"
        ]
      ],
      "raw_glosses": [
        "(topology) For a specified topological space, the group whose elements are homotopy classes of loops (images of some arbitrary closed interval whose endpoints are both mapped to a designated point) and whose group operation is concatenation."
      ],
      "related": [
        {
          "word": "fundamental groupoid"
        }
      ],
      "topics": [
        "mathematics",
        "sciences",
        "topology"
      ],
      "translations": [
        {
          "code": "ca",
          "lang": "Catalan",
          "sense": "group of equivalence classes of the homotopies of loops in a given topological space",
          "tags": [
            "masculine"
          ],
          "word": "grup fonamental"
        },
        {
          "code": "cs",
          "lang": "Czech",
          "sense": "group of equivalence classes of the homotopies of loops in a given topological space",
          "tags": [
            "feminine"
          ],
          "word": "fundamentální grupa"
        },
        {
          "code": "nl",
          "lang": "Dutch",
          "sense": "group of equivalence classes of the homotopies of loops in a given topological space",
          "tags": [
            "feminine"
          ],
          "word": "fundamentaalgroep"
        },
        {
          "code": "fi",
          "lang": "Finnish",
          "sense": "group of equivalence classes of the homotopies of loops in a given topological space",
          "word": "perusryhmä"
        },
        {
          "code": "fr",
          "lang": "French",
          "sense": "group of equivalence classes of the homotopies of loops in a given topological space",
          "tags": [
            "masculine"
          ],
          "word": "groupe fondamental"
        },
        {
          "code": "de",
          "lang": "German",
          "sense": "group of equivalence classes of the homotopies of loops in a given topological space",
          "tags": [
            "feminine"
          ],
          "word": "Fundamentalgruppe"
        },
        {
          "code": "hu",
          "lang": "Hungarian",
          "sense": "group of equivalence classes of the homotopies of loops in a given topological space",
          "word": "fundamentális csoport"
        },
        {
          "code": "is",
          "lang": "Icelandic",
          "sense": "group of equivalence classes of the homotopies of loops in a given topological space",
          "tags": [
            "feminine"
          ],
          "word": "undirstöðugrúpa"
        },
        {
          "code": "it",
          "lang": "Italian",
          "sense": "group of equivalence classes of the homotopies of loops in a given topological space",
          "tags": [
            "masculine"
          ],
          "word": "gruppo fondamentale"
        },
        {
          "code": "pl",
          "lang": "Polish",
          "sense": "group of equivalence classes of the homotopies of loops in a given topological space",
          "tags": [
            "feminine"
          ],
          "word": "grupa podstawowa"
        },
        {
          "code": "ru",
          "lang": "Russian",
          "roman": "fundamentalʹnaja gruppa",
          "sense": "group of equivalence classes of the homotopies of loops in a given topological space",
          "tags": [
            "feminine"
          ],
          "word": "фундаментальная группа"
        },
        {
          "code": "sv",
          "lang": "Swedish",
          "sense": "group of equivalence classes of the homotopies of loops in a given topological space",
          "tags": [
            "common-gender"
          ],
          "word": "fundamentalgrupp"
        },
        {
          "code": "tr",
          "lang": "Turkish",
          "sense": "group of equivalence classes of the homotopies of loops in a given topological space",
          "word": "temel grup"
        },
        {
          "code": "uk",
          "lang": "Ukrainian",
          "roman": "fundamentalʹna hrupa",
          "sense": "group of equivalence classes of the homotopies of loops in a given topological space",
          "tags": [
            "feminine"
          ],
          "word": "фундаментальна група"
        }
      ],
      "wikipedia": [
        "fundamental group"
      ]
    }
  ],
  "word": "fundamental group"
}
{
  "derived": [
    {
      "word": "algebraic fundamental group"
    },
    {
      "word": "étale fundamental group"
    },
    {
      "word": "orbifold fundamental group"
    }
  ],
  "forms": [
    {
      "form": "fundamental groups",
      "tags": [
        "plural"
      ]
    }
  ],
  "head_templates": [
    {
      "args": {},
      "expansion": "fundamental group (plural fundamental groups)",
      "name": "en-noun"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "noun",
  "related": [
    {
      "word": "fundamental groupoid"
    }
  ],
  "senses": [
    {
      "categories": [
        "English countable nouns",
        "English entries with incorrect language header",
        "English lemmas",
        "English multiword terms",
        "English nouns",
        "English terms with quotations",
        "Entries with translation boxes",
        "Pages with 1 entry",
        "Pages with entries",
        "Terms with Catalan translations",
        "Terms with Czech translations",
        "Terms with Dutch translations",
        "Terms with Finnish translations",
        "Terms with French translations",
        "Terms with German translations",
        "Terms with Hungarian translations",
        "Terms with Icelandic translations",
        "Terms with Italian translations",
        "Terms with Polish translations",
        "Terms with Russian translations",
        "Terms with Swedish translations",
        "Terms with Turkish translations",
        "Terms with Ukrainian translations",
        "en:Topology"
      ],
      "examples": [
        {
          "ref": "1991, William S. Massey, A Basic Course in Algebraic Topology, Springer, page 35:",
          "text": "From the definition it will be clear the group is a topological invariant of X; i.e., if two spaces are homeomorphic, their fundamental groups are isomorphic.",
          "type": "quote"
        },
        {
          "ref": "2011, John Coates, Minhyong Kim, Florian Pop, Mohamed Saïdi, Peter Schneider, editors, Non-abelian Fundamental Groups and Iwasawa Theory, Cambridge University Press, page vii:",
          "text": "Therein came into focus the far-reaching vision that the perspective of non-abelian fundamental groups could lead to a fundamentally new understanding of deep arithmetic phenomena, including the arithmetic theory of moduli and Diophantine finiteness on hyperbolic curves.",
          "type": "quote"
        },
        {
          "ref": "2012, Jakob Stix, editor, The Arithmetic of Fundamental Groups: PIA 2010, Springer, page ix:",
          "text": "During the more than 100 years of its existence, the notion of the fundamental group has undergone a considerable evolution.",
          "type": "quote"
        }
      ],
      "glosses": [
        "For a specified topological space, the group whose elements are homotopy classes of loops (images of some arbitrary closed interval whose endpoints are both mapped to a designated point) and whose group operation is concatenation."
      ],
      "links": [
        [
          "topology",
          "topology"
        ],
        [
          "topological space",
          "topological space"
        ],
        [
          "group",
          "group"
        ],
        [
          "element",
          "element"
        ],
        [
          "homotopy",
          "homotopy"
        ],
        [
          "class",
          "class"
        ],
        [
          "image",
          "image"
        ],
        [
          "closed",
          "closed"
        ],
        [
          "interval",
          "interval"
        ],
        [
          "endpoint",
          "endpoint"
        ],
        [
          "map",
          "map"
        ],
        [
          "point",
          "point"
        ],
        [
          "operation",
          "operation"
        ],
        [
          "concatenation",
          "concatenation"
        ]
      ],
      "raw_glosses": [
        "(topology) For a specified topological space, the group whose elements are homotopy classes of loops (images of some arbitrary closed interval whose endpoints are both mapped to a designated point) and whose group operation is concatenation."
      ],
      "topics": [
        "mathematics",
        "sciences",
        "topology"
      ],
      "wikipedia": [
        "fundamental group"
      ]
    }
  ],
  "translations": [
    {
      "code": "ca",
      "lang": "Catalan",
      "sense": "group of equivalence classes of the homotopies of loops in a given topological space",
      "tags": [
        "masculine"
      ],
      "word": "grup fonamental"
    },
    {
      "code": "cs",
      "lang": "Czech",
      "sense": "group of equivalence classes of the homotopies of loops in a given topological space",
      "tags": [
        "feminine"
      ],
      "word": "fundamentální grupa"
    },
    {
      "code": "nl",
      "lang": "Dutch",
      "sense": "group of equivalence classes of the homotopies of loops in a given topological space",
      "tags": [
        "feminine"
      ],
      "word": "fundamentaalgroep"
    },
    {
      "code": "fi",
      "lang": "Finnish",
      "sense": "group of equivalence classes of the homotopies of loops in a given topological space",
      "word": "perusryhmä"
    },
    {
      "code": "fr",
      "lang": "French",
      "sense": "group of equivalence classes of the homotopies of loops in a given topological space",
      "tags": [
        "masculine"
      ],
      "word": "groupe fondamental"
    },
    {
      "code": "de",
      "lang": "German",
      "sense": "group of equivalence classes of the homotopies of loops in a given topological space",
      "tags": [
        "feminine"
      ],
      "word": "Fundamentalgruppe"
    },
    {
      "code": "hu",
      "lang": "Hungarian",
      "sense": "group of equivalence classes of the homotopies of loops in a given topological space",
      "word": "fundamentális csoport"
    },
    {
      "code": "is",
      "lang": "Icelandic",
      "sense": "group of equivalence classes of the homotopies of loops in a given topological space",
      "tags": [
        "feminine"
      ],
      "word": "undirstöðugrúpa"
    },
    {
      "code": "it",
      "lang": "Italian",
      "sense": "group of equivalence classes of the homotopies of loops in a given topological space",
      "tags": [
        "masculine"
      ],
      "word": "gruppo fondamentale"
    },
    {
      "code": "pl",
      "lang": "Polish",
      "sense": "group of equivalence classes of the homotopies of loops in a given topological space",
      "tags": [
        "feminine"
      ],
      "word": "grupa podstawowa"
    },
    {
      "code": "ru",
      "lang": "Russian",
      "roman": "fundamentalʹnaja gruppa",
      "sense": "group of equivalence classes of the homotopies of loops in a given topological space",
      "tags": [
        "feminine"
      ],
      "word": "фундаментальная группа"
    },
    {
      "code": "sv",
      "lang": "Swedish",
      "sense": "group of equivalence classes of the homotopies of loops in a given topological space",
      "tags": [
        "common-gender"
      ],
      "word": "fundamentalgrupp"
    },
    {
      "code": "tr",
      "lang": "Turkish",
      "sense": "group of equivalence classes of the homotopies of loops in a given topological space",
      "word": "temel grup"
    },
    {
      "code": "uk",
      "lang": "Ukrainian",
      "roman": "fundamentalʹna hrupa",
      "sense": "group of equivalence classes of the homotopies of loops in a given topological space",
      "tags": [
        "feminine"
      ],
      "word": "фундаментальна група"
    }
  ],
  "word": "fundamental group"
}

Download raw JSONL data for fundamental group meaning in English (5.7kB)


This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2024-11-04 from the enwiktionary dump dated 2024-10-02 using wiktextract (d6bf104 and a5af179). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.

If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.